论文标题

贪婪的准Newton方法,具有明确的超级线性收敛

Greedy Quasi-Newton Methods with Explicit Superlinear Convergence

论文作者

Rodomanov, Anton, Nesterov, Yurii

论文摘要

在本文中,我们研究了准Newton方法的贪婪变体。它们基于Broyden家族的某个子类的更新公式。特别是,该子类包括知名的DFP,BFG和SR1更新。但是,与经典的准牛顿方法相反,该方法使用连续迭代的差异来更新Hessian近似值,我们的方法应用了基本向量,贪婪地选择了以最大程度地提高进度的一定程度。对于贪婪的准Newton方法,我们根据其局部超线性收敛的速率建立了一个明确的非质子束缚,其中包含收缩因子,具体取决于迭代计数器的平方。我们还表明,这些方法产生了黑森州近似值,其偏离精确的黑森线性收敛到零。

In this paper, we study greedy variants of quasi-Newton methods. They are based on the updating formulas from a certain subclass of the Broyden family. In particular, this subclass includes the well-known DFP, BFGS and SR1 updates. However, in contrast to the classical quasi-Newton methods, which use the difference of successive iterates for updating the Hessian approximations, our methods apply basis vectors, greedily selected so as to maximize a certain measure of progress. For greedy quasi-Newton methods, we establish an explicit non-asymptotic bound on their rate of local superlinear convergence, which contains a contraction factor, depending on the square of the iteration counter. We also show that these methods produce Hessian approximations whose deviation from the exact Hessians linearly convergences to zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源