论文标题

Hagedorn温度大$ n $ majoraga量子力学

Hagedorn Temperature in Large $N$ Majorana Quantum Mechanics

论文作者

Gaitan, Gabriel, Klebanov, Igor R., Pakrouski, Kiryl, Pallegar, Preethi N., Popov, Fedor K.

论文摘要

我们讨论了两种类型的量子机械模型,它们伴随着大量的Majorana Fermions并具有正交对称组。在矢量类型的模型中,只有一个对称组的等级很高。大$ n $限制将保持$ gn =λ$固定,其中$ g $乘以四分之一的哈密顿量。我们介绍了一个简单的模型,其中$ o(n)\ times so(4)$对称性,其能量是根据对称组的二次casimirs表示的。该模型可能会变形,以使对称性为$ O(n)\ times o(2)^2 $,而汉密尔顿人则减少了在Arxiv中研究的:1802.10263。我们发现了$ n $ $ n $状态和自由能的分析表达式。在两个矢量模型中,对于广泛的能量,大的$ n $状态密度大约为$ e^{ - | e |/λ} $。随着温度接近Hagedorn温度$ t _ {\ rm H} =λ$,这会引起临界行为。在正式的大$ n $限制中,特定的热量将$(t_h- t)^{ - 2} $吹出,这意味着$ t_h $是限制温度。但是,在任何有限的$ n $中,都可以任意达到较大的温度。因此,有限的$ n $效果平滑了Hagedorn过渡。我们还研究了矩阵类型的模型,它们具有两个$ O(n)$对称组的模型。 Majoraana矩阵模型提供了一个示例,其中$ o(n)^2 \ times o(2)$对称性是在Arxiv中研究的:1802.10263。与矢量模型相反,状态的密度是光滑的,几乎在光谱中部附近。

We discuss two types of quantum mechanical models that couple large numbers of Majorana fermions and have orthogonal symmetry groups. In models of vector type, only one of the symmetry groups has a large rank. The large $N$ limit is taken keeping $gN=λ$ fixed, where $g$ multiplies the quartic Hamiltonian. We introduce a simple model with $O(N)\times SO(4)$ symmetry, whose energies are expressed in terms of the quadratic Casimirs of the symmetry groups. This model may be deformed so that the symmetry is $O(N)\times O(2)^2$, and the Hamiltonian reduces to that studied in arXiv:1802.10263. We find analytic expressions for the large $N$ density of states and free energy. In both vector models, the large $N$ density of states varies approximately as $e^{-|E|/λ}$ for a wide range of energies. This gives rise to critical behavior as the temperature approaches the Hagedorn temperature $T_{\rm H} = λ$. In the formal large $N$ limit, the specific heat blows up as $(T_H- T)^{-2}$, which implies that $T_H$ is the limiting temperature. However, at any finite $N$, it is possible to reach arbitrarily large temperatures. Thus, the finite $N$ effects smooth out the Hagedorn transition. We also study models of matrix type, which have two $O(N)$ symmetry groups with large rank. An example is provided by the Majorana matrix model with $O(N)^2\times O(2)$ symmetry, which was studied in arXiv:1802.10263. In contrast with the vector models, the density of states is smooth and nearly Gaussian near the middle of the spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源