论文标题

在线自动化隐私政策生成器的质量评估:一项实证研究

Quality Assessment of Online Automated Privacy Policy Generators: An Empirical Study

论文作者

Sun, Ruoxi, Xue, Minhui

论文摘要

在线自动化隐私策略生成器(APPGS)是应用程序开发人员使用的工具,可以快速创建应用程序隐私策略,这些策略是将每个移动应用程序纳入的隐私法规所要求的。这些工具的创建为应用程序开发人员带来了便利。但是,这些工具的质量使开发商和利益相关者处于法律风险。在本文中,我们进行了一项经验研究,以评估在线APPG的质量。我们分析隐私政策的完整性,确定应在完整的隐私政策中涵盖哪些类别和项目,并使用样板应用程序进行APPG评估。评估结果表明,由于缺乏对APP行为的静态或动态分析,开发人员可能会遇到APPG引起的两种类型的问题。首先,生成的政策可能是不完整的,因为它们不涵盖隐私政策所需的所有基本项目。其次,一些生成的隐私政策包含不必要的个人信息收集或任意承诺与用户输入不一致。最终,APPG的缺陷可能会导致严重的法律问题。我们希望本文中产生的结果和见解能够激发APPG的健康和道德发展,以制定更完整,准确和强大的隐私政策。

Online Automated Privacy Policy Generators (APPGs) are tools used by app developers to quickly create app privacy policies which are required by privacy regulations to be incorporated to each mobile app. The creation of these tools brings convenience to app developers; however, the quality of these tools puts developers and stakeholders at legal risk. In this paper, we conduct an empirical study to assess the quality of online APPGs. We analyze the completeness of privacy policies, determine what categories and items should be covered in a complete privacy policy, and conduct APPG assessment with boilerplate apps. The results of assessment show that due to the lack of static or dynamic analysis of app's behavior, developers may encounter two types of issues caused by APPGs. First, the generated policies could be incomplete because they do not cover all the essential items required by a privacy policy. Second, some generated privacy policies contain unnecessary personal information collection or arbitrary commitments inconsistent with user input. Ultimately, the defects of APPGs may potentially lead to serious legal issues. We hope that the results and insights developed in this paper can motivate the healthy and ethical development of APPGs towards generating a more complete, accurate, and robust privacy policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源