论文标题
研究深神经网络的组成结构
Investigating the Compositional Structure Of Deep Neural Networks
论文作者
论文摘要
当前对深神经网络的理解只能部分解释输入结构,网络参数和优化算法如何共同有助于实现在许多现实世界应用中通常观察到的强泛型能力。为了提高深神经网络的理解和解释性,我们在这里介绍了一个基于分段线性激活函数的组成结构的新型理论框架。通过定义代表通过网络层的激活模式组成的直接无环图,可以表征有关预测标签和用于执行预测的特定标签和特定(线性)转换的输入数据实例。 MNIST数据集的初步测试表明,我们的方法可以将输入实例分组在神经网络的内部表示中,从而提供了输入复杂性的直观度量。
The current understanding of deep neural networks can only partially explain how input structure, network parameters and optimization algorithms jointly contribute to achieve the strong generalization power that is typically observed in many real-world applications. In order to improve the comprehension and interpretability of deep neural networks, we here introduce a novel theoretical framework based on the compositional structure of piecewise linear activation functions. By defining a direct acyclic graph representing the composition of activation patterns through the network layers, it is possible to characterize the instances of the input data with respect to both the predicted label and the specific (linear) transformation used to perform predictions. Preliminary tests on the MNIST dataset show that our method can group input instances with regard to their similarity in the internal representation of the neural network, providing an intuitive measure of input complexity.