论文标题
贝叶斯推断在带激励扫描探针显微镜中用于成像中最佳动态模型选择
Bayesian inference in band excitation Scanning Probe Microscopy for optimal dynamic model selection in imaging
论文作者
论文摘要
在过去的二十年中,扫描探针显微镜(SPM)的普遍趋势是从简单的2D成像过渡到复杂的检测和光谱成像模式。复杂的SPM发动机的出现带来了可靠数据解释的挑战,即从检测到的信号转换为特定于尖端表面相互作用的描述符,然后转换为材料属性。在这里,我们实施了一种贝叶斯推论方法,以分析带激发(BE)SPM中的图像形成机理。与经典功能拟合方法中的点估计值相比,贝叶斯推断允许以相应的先验分布形式融入现有的材料和探针行为知识,并以易于解释的后验分布的形式返回有关材料功能的信息。我们注意到,在应用贝叶斯方法时,应特别注意作为模型选择与建立实际参数等价的问题。我们进一步探讨了经典铁电材料PBTIO3中拓扑缺陷处的非线性机械行为。我们观察到行李共振频率和样品表面的非线性的非平凡演化,这表明存在域结构的隐藏元素。这些观察结果表明,铁电域壁上的异常行为的光谱可以比以前认为的明显宽大,并且除了静态和微波电导率外,还可以扩展到非惯性机械性能。
The universal tendency in scanning probe microscopy (SPM) over the last two decades is to transition from simple 2D imaging to complex detection and spectroscopic imaging modes. The emergence of complex SPM engines brings forth the challenge of reliable data interpretation, i.e. conversion from detected signal to descriptors specific to tip-surface interactions and subsequently to materials properties. Here, we implemented a Bayesian inference approach for the analysis of the image formation mechanisms in band excitation (BE) SPM. Compared to the point estimates in classical functional fit approaches, Bayesian inference allows for the incorporation of extant knowledge of materials and probe behavior in the form of corresponding prior distribution and return the information on the material functionality in the form of readily interpretable posterior distributions. We note that in application of Bayesian methods, special care should be made for proper setting on the problem as model selection vs. establishing practical parameter equivalence. We further explore the non-linear mechanical behaviors at topological defects in a classical ferroelectric material, PbTiO3. We observe the non-trivial evolution of Duffing resonance frequency and the nonlinearity of the sample surface, suggesting the presence of the hidden elements of domain structure. These observations suggest that the spectrum of anomalous behaviors at the ferroelectric domain walls can be significantly broader than previously believed and can extend to non-conventional mechanical properties in addition to static and microwave conductance.