论文标题

学习通过图网络模拟复杂的物理

Learning to Simulate Complex Physics with Graph Networks

论文作者

Sanchez-Gonzalez, Alvaro, Godwin, Jonathan, Pfaff, Tobias, Ying, Rex, Leskovec, Jure, Battaglia, Peter W.

论文摘要

在这里,我们提出了一个机器学习框架和模型实现,该框架可以学会模拟各种具有挑战性的物理领域,涉及流体,刚性固体和可变形的材料相互作用。我们的框架---我们称其为“基于图网络的模拟器”(GNS) - 代表具有粒子的物理系统的状态,以图中的节点表示为节点,并通过学习的消息来计算动态。我们的结果表明,我们的模型可以从训练期间具有数千个粒子的单次临界预测概括为不同的初始条件,数千个时间段,并且在测试时至少增加了数量级。我们的模型对各种评估指标的超参数选择是强大的:长期绩效的主要决定因素是消息通讯步骤的数量,并通过用噪声损坏训练数据来减轻错误的积累。我们的GNS框架在学习的物理模拟中推进了最新的框架,并有望解决各种复杂的前进和反问题。

Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework---which we term "Graph Network-based Simulators" (GNS)---represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源