论文标题

块 - 期张量分解:模型选择和计算

Block-Term Tensor Decomposition: Model Selection and Computation

论文作者

Rontogiannis, Athanasios A., Kofidis, Eleftherios, Giampouras, Paris V.

论文摘要

所谓的块期分解(BTD)张量模型最近由于代表由\ emph {blocks}组成的\ emph {blocks}的能力增强的秩比一个高于一个的\ emph {blocks}的能力增强而引起了人们的注意,这是多种和多样化的应用中遇到的场景。因此,对其独特性和近似值进行了彻底的研究。然而,估计BTD模型结构的具有挑战性的问题,即块项的数量及其各个等级,直到最近才开始引起极大的关注。在本文中,提出了一种新颖的BTD模型选择和计算方法,该方法是基于对因子和以A \ Emph {ercharchical}方式施加柱稀疏\ Emph {共同}的想法,并将等级估计为不可辨认幅度的因子柱的数量。遵循块连续的上限最小化(BSUM)的方法,显示了提出的优化问题,从而导致交替的层次迭代迭代重新加权的最小二乘(hirls)算法,该算法是快速收敛的,并且具有较高的计算效率,因为它依赖于其与封闭式的小型子贴上迭代相关的,该算法与封闭式的小型网络相关。报告了合成示例的仿真结果和超光谱图像的涂抹应用,这证明了拟议方案在等级估计的成功率以及计算时间和收敛速度方面所提出的方案的优越性。

The so-called block-term decomposition (BTD) tensor model has been recently receiving increasing attention due to its enhanced ability of representing systems and signals that are composed of \emph{blocks} of rank higher than one, a scenario encountered in numerous and diverse applications. Its uniqueness and approximation have thus been thoroughly studied. Nevertheless, the challenging problem of estimating the BTD model structure, namely the number of block terms and their individual ranks, has only recently started to attract significant attention. In this paper, a novel method of BTD model selection and computation is proposed, based on the idea of imposing column sparsity \emph{jointly} on the factors and in a \emph{hierarchical} manner and estimating the ranks as the numbers of factor columns of non-negligible magnitude. Following a block successive upper bound minimization (BSUM) approach for the proposed optimization problem is shown to result in an alternating hierarchical iteratively reweighted least squares (HIRLS) algorithm, which is fast converging and enjoys high computational efficiency, as it relies in its iterations on small-sized sub-problems with closed-form solutions. Simulation results for both synthetic examples and a hyper-spectral image de-noising application are reported, which demonstrate the superiority of the proposed scheme over the state-of-the-art in terms of success rate in rank estimation as well as computation time and rate of convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源