论文标题

通过RRT*合理地不专注的路径计划*

Rationally Inattentive Path-Planning via RRT*

论文作者

Stefan, Jeb, Pedram, Ali Reza, Funada, Riku, Tanaka, Takashi

论文摘要

我们考虑了一个在配置空间中行驶的移动机器人的路径计划场景,并在随机干扰存在下障碍物。在不确定的配置空间上提出了一个新颖的路径长度度量,然后与现有的RRT*算法集成。度量标准是两个术语的加权总和,既捕获机器人传播的欧几里得距离,又捕获了感知成本,即机器人必须对环境的信息遵循路径的遵循。显示了相对于总变异度量的拓扑的路径长度函数的连续性,并讨论了理性不集中的RRT*算法的最佳性。提出了三项数值研究,以显示新算法的实用性。

We consider a path-planning scenario for a mobile robot traveling in a configuration space with obstacles under the presence of stochastic disturbances. A novel path length metric is proposed on the uncertain configuration space and then integrated with the existing RRT* algorithm. The metric is a weighted sum of two terms which capture both the Euclidean distance traveled by the robot and the perception cost, i.e., the amount of information the robot must perceive about the environment to follow the path safely. The continuity of the path length function with respect to the topology of the total variation metric is shown and the optimality of the Rationally Inattentive RRT* algorithm is discussed. Three numerical studies are presented which display the utility of the new algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源