论文标题
Crapper的精确解决方案在恒定涡度流中的波动的新应用
A new application of Crapper's exact solution to waves in constant vorticity flows
论文作者
论文摘要
1957年,斗篷找到了一个精确的溶液,用于在无限深度的无旋转流动表面传播的毛细管波。在这里,我们提供了结论性的分析和数值证据,表明在没有重力和表面张力的影响下,在恒定的涡度流动下,在没有重力和表面张力的情况下,周期性行驶波的曲线使周期性的行驶波的曲线。这是通过在小振幅参数中构建到三阶的stokes扩展和数值计算大幅度波来实现的。
In 1957 Crapper found an exact solution for capillary waves propagating at the surface of an irrotational flow of infinite depth. Here we provide conclusive analytical and numerical evidence that a Crapper wave makes the profile of a periodic traveling wave propagating, in the absence of the effects of gravity and surface tension, in a constant vorticity flow. This is achieved by constructing a Stokes expansion up to the third order in a small amplitude parameter and by numerically computing large amplitude waves.