论文标题

氧化石墨烯纳米孔中的超冷水的动态过渡:表面疏水性的影响

Dynamical Transitions of Supercooled Water in Graphene oxide Nanopores: Influence of Surface Hydrophobicity

论文作者

M, Rajasekaran, Ayappa, K. Ganapathy

论文摘要

进行了分子动力学模拟,以探索在氧化石墨烯纳米孔中强限制和轻度冷水中的动力跨界现象。与使用限制来研究大量水的特性的研究相反,我们对在没有任何散装水的情况下强烈限制水的动力过渡感兴趣。通过改变疏水性的程度对位于10Å\ \ \ \ \ \ \ \ \ \ \,疏水性的范围的程度,研究了氧化石墨烯表面的物理化学性质对动力学跃迁的影响。所有动力学量均显示出典型的放慢速度,因为温度从298降低至200 K;但是,过渡的性质是表面类型的独特功能。由交替的亲水性和疏水区组成的表面之间限制的水表现出在237 K的跨界温度下的扩散系数和旋转放松时间在237 K的扩散系数和旋转放松时间上表现出强大的动力过渡,并且在238 K的$α$递送时间中显示出$α$ - 余量的跨度,这比238 k的散布在$α$ relag的时间中。在没有散装水的情况下,在强烈的限制下,在轻度过冷的情况下可能会发生这些动态过渡。相比之下,限制在亲水性孔中的水显示在整个温度范围内的一个Arrhenius能量屏障。我们的结果表明,除了限制外,表面的性质在确定过冷时水的动态过渡方面还可以发挥关键作用。

Molecular dynamics simulations are carried out to explore the dynamical crossover phenomenon in strongly confined and mildly supercooled water in graphene oxide nanopores. In contrast to studies where confinement is used to study the properties of bulk water, we are interested in the dynamical transitions for strongly confined water in the absence of any bulk-like water. The influence of the physicochemical nature of the graphene oxide surface on the dynamical transitions is investigated by varying the extent of hydrophobicity on the confining surfaces placed at an inter-surface separation of 10 Å\,. All dynamical quantities show a typical slowing down as the temperature is lowered from 298 to 200 K; however, the nature of the transition is a distinct function of the surface type. Water confined between surfaces consisting of alternating hydrophilic and hydrophobic regions exhibit a strong-to-strong dynamical transition in the diffusion coefficients and rotational relaxation times at a crossover temperature of 237 K and show a fragile-to-strong transition in the $α$-relaxation time at 238 K. The observed crossover temperature is much higher than the freezing point of the SPC/E water model used in this study, indicating that these dynamical transitions can occur with mild supercooling under strong confinement in the absence of bulk-like water. In contrast, water confined in hydrophilic pore shows a single Arrhenius energy barrier over the entire temperature range. Our results indicate that in addition to confinement, the nature of the surface can play a critical role in determining the dynamical transitions for water upon supercooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源