论文标题
平均曲率流动奇点的存在,有界平均曲率
Existence of Mean Curvature Flow Singularities with Bounded Mean Curvature
论文作者
论文摘要
在[VEL94]中,Velazquez在每个维度$ \ Mathbb {r}^n $中构建了一个可计数的平均曲率流解决方案集合。在有限的时间,这些解决方案中的每一个都变得奇异。相比之下,我们在这里确认,在每个维度$ n \ ge 8 $中,这些解决方案的非平凡子集具有均匀界限的平均曲率。
In [Vel94], Velazquez constructed a countable collection of mean curvature flow solutions in $\mathbb{R}^N$ in every dimension $N \ge 8$. Each of these solutions becomes singular in finite time at which time the second fundamental form blows up. In contrast, we confirm here that, in every dimension $N \ge 8$, a nontrivial subset of these solutions has uniformly bounded mean curvature.