论文标题
宇宙学的弹跳,循环宇宙和有效的宇宙学常数
Cosmological bounces, cyclic universes, and effective cosmological constant in Einstein-Cartan-Dirac-Maxwell theory
论文作者
论文摘要
爱因斯坦 - 卡丹理论是以非变化扭转为特征的一般相对性标准表述的扩展。后者是通过旋转张量来源的物质场来源的,预计其效果在非常高的自旋密度下很重要。在这项工作中,我们详细分析了爱因斯坦 - 卡丹理论的物理学,迪拉克和麦克斯韦场与时空扭转最少。这打破了$ u(1)$仪表对称性,这是由于早期宇宙中扭转引起的相变的可能性所暗示的。所得的类似狄拉克的和麦克斯韦的方程是非线性的,具有自相互作用,并且具有Fermion-Boson非最小耦合。我们讨论了该理论的几个宇宙学方面,包括在扭转时代的弹跳,加速阶段和物质抗对称性不对称,以及较晚的效应,例如在环状解决方案中产生有效的宇宙学恒定,深色能量以及未来的弹跳。
Einstein-Cartan theory is an extension of the standard formulation of General Relativity characterized by a non-vanishing torsion. The latter is sourced by the matter fields via the spin tensor, and its effects are expected to be important at very high spin densities. In this work we analyze in detail the physics of Einstein-Cartan theory with Dirac and Maxwell fields minimally coupled to the spacetime torsion. This breaks the $U(1)$ gauge symmetry, which is suggested by the possibility of a torsion-induced phase transition in the early Universe. The resulting Dirac-like and Maxwell-like equations are non-linear with self-interactions as well as having fermion-boson non-minimal couplings. We discuss several cosmological aspects of this theory, including bounces, acceleration phases and matter-antimatter asymmetry in the torsion era, as well as late-time effects such as the generation of an effective cosmological constant, dark energy, and future bounces within cyclic solutions.