论文标题

类似Syk的模型的热合奏的子系统熵

Subsystem Rényi Entropy of Thermal Ensembles for SYK-like models

论文作者

Zhang, Pengfei, Liu, Chunxiao, Chen, Xiao

论文摘要

Sachdev-Ye-Kitaev模型是具有无限范围随机相互作用的$ n $ modes fermionic模型。在这项工作中,我们使用大致限制的路径综合形式主义研究了SYK模型子系统的热Rényi熵。结果与精确的对角线化[1]一致,当子系统尺寸$ M \ m \ leq n/2 $时,可以通过热熵(有效温度[2])很好地近似。我们还考虑使用二次随机跳跃期或$ u(1)$收费保护的SYK模型的概括。

The Sachdev-Ye-Kitaev model is an $N$-modes fermionic model with infinite range random interactions. In this work, we study the thermal Rényi entropy for a subsystem of the SYK model using the path-integral formalism in the large-$N$ limit. The results are consistent with exact diagonalization [1] and can be well approximated by thermal entropy with an effective temperature [2] when subsystem size $M\leq N/2$. We also consider generalizations of the SYK model with quadratic random hopping term or $U(1)$ charge conservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源