论文标题

在更高维度的Schwarzschild因果关系上

On Schwarzschild causality in higher dimensions

论文作者

Cameron, Peter, Dunajski, Maciej

论文摘要

我们表明,渐近空间的因果特性取决于其尺寸:虽然过去的任何点的时间般的未来,$ \ Mathcal $ \ Mathcal {i}^ - $包含整个未来的综合属性$ \ \ \ \ \ \ \ \ \ natercal {i}^+in $(2+1+1)$(2+1)$(2+1)$(2+1)$(3+1)$(3+1) (我们称之为Penrose属性)如果$ D> 3 $,则不以$(D+1)$尺寸Schwarzschild持有。我们还表明,penrose属性在$(3+1)$尺寸中适用于Kerr解决方案,并在存在正质量的情况下与散射理论进行了讨论。

We show that the causal properties of asymptotically flat spacetimes depend on their dimensionality: while the time-like future of any point in the past conformal infinity $\mathcal{I}^-$ contains the whole of the future conformal infinity $\mathcal{I}^+$ in $(2+1)$ and $(3+1)$ dimensional Schwarzschild spacetimes, this property (which we call the Penrose property) does not hold for $(d+1)$ dimensional Schwarzschild if $d>3$. We also show that the Penrose property holds for the Kerr solution in $(3+1)$ dimensions, and discuss the connection with scattering theory in the presence of positive mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源