论文标题
随机相互作用粒子系统的均匀近似2 $ d $ navier-stokes方程
Uniform approximation of 2$d$ Navier-Stokes equation by stochastic interacting particle systems
论文作者
论文摘要
我们考虑一个建模为由布朗动作驱动的$ n $随机微分方程的系统的相互作用粒子系统。我们证明(漫画的)经验过程在时间和空间变量上均匀地收敛到以涡旋形式编写的二维Navier-Stokes方程的解决方案。 证明遵循半群的方法。
We consider an interacting particle system modeled as a system of $N$ stochastic differential equations driven by Brownian motions. We prove that the (mollified) empirical process converges, uniformly in time and space variables, to the solution of the two-dimensional Navier-Stokes equation written in vorticity form. The proofs follow a semigroup approach.