论文标题
对非最小耦合Weyl连接重力理论的Ostrogradsky不稳定性分析
An Ostrogradsky Instability Analysis of Non-minimally Coupled Weyl Connection Gravity Theories
论文作者
论文摘要
我们研究了非最少耦合的Weyl连接重力(NMCWCG)的哈密顿形式主义,以检查是否存在Ostrogragradsky不稳定性。 NMCWCG理论的Hamiltonian是通过将时空叶分成真实的线(表示时间)和\ Mbox {3维}空间样的超曲面而获得的,并考虑将空间度量和外部曲率视为该理论的规范协调的高空曲率。鉴于我们研究的理论与通常没有Ostogragradsky不稳定性相比,我们研究的理论包含了一个额外的动力学矢量场,我们能够通过限制此WEYL场来构建一个没有这些不稳定性的有效理论。
We study the Hamiltonian formalism of the non-minimally coupled Weyl connection gravity (NMCWCG) in order to check whether Ostrogradsky instabilities are present. The Hamiltonian of the NMCWCG theories is obtained by foliating space-time into a real line (representing time) and \mbox{3-dimensional} space-like hypersurfaces, and by considering the spatial metric and the extrinsic curvature of the hypersurfaces as the canonical coordinates of the theory. Given the fact that the theory we study contains an additional dynamical vector field compared to the usual NMC models, which do not have Ostrogradsky instabilities, we are able to construct an effective theory without these instabilities, by constraining this Weyl field.