论文标题
在theta神经元网络中移动颠簸
Moving bumps in theta neuron networks
论文作者
论文摘要
我们考虑在环上的theta神经元的大型网络,并与不对称的内核结合。这样的网络支持稳定的活动“颠簸”,如果耦合内核是不对称的,则沿环移动。我们使用正式描述无限网络的连续性方程来研究内核不对称的影响,对这些运动凸起的存在,稳定性和速度。根据网络内的异质性水平,我们发现分叉的复杂序列随着不对称量而变化,与经典神经场模型的行为形成鲜明对比。
We consider large networks of theta neurons on a ring, synaptically coupled with an asymmetric kernel. Such networks support stable "bumps" of activity, which move along the ring if the coupling kernel is asymmetric. We investigate the effects of the kernel asymmetry on the existence, stability and speed of these moving bumps using continuum equations formally describing infinite networks. Depending on the level of heterogeneity within the network we find complex sequences of bifurcations as the amount of asymmetry is varied, in strong contrast to the behaviour of a classical neural field model.