论文标题

关于Riemann Zeta功能对数的迭代积分的价值分布

On the value-distribution of iterated integrals of the logarithm of the Riemann zeta-function I: denseness

论文作者

Endo, Kenta, Inoue, Shota

论文摘要

我们认为在某些垂直和水平线上的$ \logζ$的迭代积分。在这里,功能$ζ$是Riemann Zeta功能。无论是否在临界线上riemann zeta功能的值在复杂的平面中密集,这是一个众所周知的开放问题。在本文中,我们为水平线上迭代积分的值的密集性提供了结果。通过使用此结果,我们在Riemann假设下获得了$ \ int_ {0}^{t} \logζ(1/2 + it')dt'$的值的密度。此外,我们表明,对于任何$ m \ geq 2 $,关键行上的$ m $ times迭代积分的值的密度相当于Riemann假设。

We consider iterated integrals of $\logζ(s)$ on certain vertical and horizontal lines. Here, the function $ζ(s)$ is the Riemann zeta-function. It is a well known open problem whether or not the values of the Riemann zeta-function on the critical line are dense in the complex plane. In this paper, we give a result for the denseness of the values of the iterated integrals on the horizontal lines. By using this result, we obtain the denseness of the values of $\int_{0}^{t} \log ζ(1/2 + it')dt'$ under the Riemann Hypothesis. Moreover, we show that, for any $m\geq 2$, the denseness of the values of an $m$-times iterated integral on the critical line is equivalent to the Riemann Hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源