论文标题
Q空间轨迹成像中微观扩散各向异性指数的对比度比率分析
Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging
论文作者
论文摘要
扩散量张量成像(DTI)中的扩散各向异性通常用归一化扩散各向异性指数(DAIS)定量。最常使用分数各向异性(FA),但是在扩散各向异性图中最大化对比度 - 噪声比(CNR)时,已经引入了几个替代性DAI。示例包括缩放的相对各向异性(SRA),伽玛变量各向异性指数(GV),表面各向异性(UASURF)和晶格指数(LI)。随着编码多维扩散的出现,可以确定微观扩散各向异性在体素中的存在,这在理论上与方向相干性无关。根据DTI,微观各向异性通常通过微观分数各向异性(UFA)来定量。在这项工作中,除了UFA外,四个微观扩散各向异性指数(UDAIS)USRA,UGV,UUASURF和ULI的定义与各自的DAI定义,通过平均扩散量张量和协方差张量。具有三种代表性分布的微观扩散张量的模拟显示,当各向同性和微观各向异性扩散区分时,CNR差异明显。 Q空间轨迹成像(QTI)被用来获取所有指标的体内图。为此,使用了15分钟的协议,具有线性,平面和球形张量编码。所得的地图质量良好,并且表现出不同的对比度,例如在灰色和白色物质之间。这表明在未来的研究研究中使用多个UDAI可能是有益的。
Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (uFA). In this work, in addition to the uFA, the four microscopic diffusion anisotropy indices (uDAIs) usRA, uGV, uUAsurf, and uLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15 min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one uDAI in future investigational studies.