论文标题
非热系统的明确散射矩阵
Unambiguous scattering matrix for non-Hermitian systems
论文作者
论文摘要
$ \ MATHCAL {PT} $对称是一个独特的平台,用于轻度操纵和在单向隐形,激光,感应等中使用多功能。破碎的$ \ MATHCAL {PT} $ - 在非官方开放系统中的对称状态通过散射矩阵来描述。作为开放系统的最简单示例,多层结构对散射矩阵没有确定的定义,因为可以输出输出端口。与$ \ Mathcal {pt} $ - 对称和$ \ Mathcal {pt} $的特殊点的定义的不确定性 - 对称 - 对称 - 破裂状态提出了一个重要问题,因为在应用程序和模式歧视的应用中,特殊点是必不可少的。在这里,我们从$ \ Mathcal {pt} $ - 对称的汉密尔顿和散射矩阵之间的明确关系中得出了适当的散射矩阵。我们揭示了带有输出输出端口的散射矩阵的特殊点与$ \ MATHCAL {PT} $对称破坏无关。然而,它们可以用于寻找激光发作,如我们的时间域计算和散射矩阵极点分析所证明的那样。我们的结果对于非炎热系统的各种应用很重要,包括包围特殊点,连贯的完美吸收,$ \ MATHCAL {PT} $ - 对称的等离子体符号,等等。
$\mathcal{PT}$ symmetry is a unique platform for light manipulation and versatile use in unidirectional invisibility, lasing, sensing, etc. Broken and unbroken $\mathcal{PT}$-symmetric states in non-Hermitian open systems are described by scattering matrices. A multilayer structure, as a simplest example of the open system, has no certain definition of the scattering matrix, since the output ports can be permuted. The uncertainty in definition of the exceptional points bordering $\mathcal{PT}$-symmetric and $\mathcal{PT}$-symmetry-broken states poses an important problem, because the exceptional points are indispensable in applications as sensing and mode discrimination. Here we derive the proper scattering matrix from the unambiguous relation between the $\mathcal{PT}$-symmetric Hamiltonian and scattering matrix. We reveal that the exceptional points of the scattering matrix with permuted output ports are not related to the $\mathcal{PT}$ symmetry breaking. Nevertheless, they can be employed for finding a lasing onset as demonstrated in our time-domain calculations and scattering-matrix pole analysis. Our results are important for various applications of the non-Hermitian systems including encircling exceptional points, coherent perfect absorption, $\mathcal{PT}$-symmetric plasmonics, etc.