论文标题

GraphChallenge.org稀疏的深神经网络性能

GraphChallenge.org Sparse Deep Neural Network Performance

论文作者

Kepner, Jeremy, Alford, Simon, Gadepally, Vijay, Jones, Michael, Milechin, Lauren, Reuther, Albert, Robinett, Ryan, Samsi, Sid

论文摘要

MIT/IEEE/Amazon GraphAllenge.org鼓励社区方法开发新的解决方案,以分析图形和稀疏数据。稀疏的AI分析具有独特的可伸缩性困难。稀疏的深度神经网络(DNN)挑战借鉴了机器学习,高性能计算和视觉分析的先前挑战,以创造出反映新兴稀疏AI系统的挑战。稀疏的DNN挑战基于数学定义明确的DNN推理计算,并且可以在任何编程环境中实现。 2019年,从众多作者和组织收到了几项稀疏DNN挑战提交。本文介绍了这些意见书中表现最好的人的性能分析。这些提交表明,他们最新的稀疏DNN执行时间,$ t _ {\ rm dnn} $,是执行的DNN操作数量的强大功能,$ n _ {\ rm op} $。稀疏的DNN挑战提供了当前稀疏DNN系统的清晰图片,并强调了新的创新需要在非常稀疏的DNN上实现高性能。

The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective of emerging sparse AI systems. The sparse DNN challenge is based on a mathematically well-defined DNN inference computation and can be implemented in any programming environment. In 2019 several sparse DNN challenge submissions were received from a wide range of authors and organizations. This paper presents a performance analysis of the best performers of these submissions. These submissions show that their state-of-the-art sparse DNN execution time, $T_{\rm DNN}$, is a strong function of the number of DNN operations performed, $N_{\rm op}$. The sparse DNN challenge provides a clear picture of current sparse DNN systems and underscores the need for new innovations to achieve high performance on very large sparse DNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源