论文标题

空中交通管制的深层合奏多代理增强学习方法

A Deep Ensemble Multi-Agent Reinforcement Learning Approach for Air Traffic Control

论文作者

Ghosh, Supriyo, Laguna, Sean, Lim, Shiau Hong, Wynter, Laura, Poonawala, Hasan

论文摘要

空中交通管制是一个极具挑战性的操作问题的一个例子,该问题很容易通过决策支持技术增强人类专业知识。在本文中,我们提出了一个新的智能决策框架,该框架利用多代理增强学习(MARL),以动态地建议实时调整飞机速度。该系统的目的是增强空中交通管制员为飞机提供有效指导的能力,以避免空中交通拥堵,近乎失误的情况以及提高到达及时性。我们开发了一种新颖的深层MARL方法,可以通过学习在基于本地内核的RL模型和更广泛的深度MARL模型之间有效仲裁的空中交通管制问题的复杂性。拟议的方法对由Eurocontrol开发的开源空中交通管理模拟器进行了培训和评估。包括数千架飞机在内的现实世界数据集上的广泛经验结果证明了使用多代理RL解决通行空气交通管制的问题的可行性,并表明我们提出的深层集合MARL方法显着超过了三种最先进的基准测试方法。

Air traffic control is an example of a highly challenging operational problem that is readily amenable to human expertise augmentation via decision support technologies. In this paper, we propose a new intelligent decision making framework that leverages multi-agent reinforcement learning (MARL) to dynamically suggest adjustments of aircraft speeds in real-time. The goal of the system is to enhance the ability of an air traffic controller to provide effective guidance to aircraft to avoid air traffic congestion, near-miss situations, and to improve arrival timeliness. We develop a novel deep ensemble MARL method that can concisely capture the complexity of the air traffic control problem by learning to efficiently arbitrate between the decisions of a local kernel-based RL model and a wider-reaching deep MARL model. The proposed method is trained and evaluated on an open-source air traffic management simulator developed by Eurocontrol. Extensive empirical results on a real-world dataset including thousands of aircraft demonstrate the feasibility of using multi-agent RL for the problem of en-route air traffic control and show that our proposed deep ensemble MARL method significantly outperforms three state-of-the-art benchmark approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源