论文标题
M2:具有偏好,受欢迎程度和过渡的混合模型
M2: Mixed Models with Preferences, Popularities and Transitions for Next-Basket Recommendation
论文作者
论文摘要
下一键建议建议将一组物品推入下一个篮子的问题,用户将整体购买这些物品。在本文中,我们开发了一种新型混合模型,具有偏好,受欢迎程度和过渡(M2),以进行下一键建议。该方法模拟了下一键生成过程中的三个重要因素:1)用户的一般偏好,2)项目的全球流行和3)项目之间的过渡模式。与现有的基于神经网络的方法不同,M2不使用复杂的网络来建模项目之间的过渡,或者为用户生成嵌入。取而代之的是,它具有简单的基于编码器的方法(ED-TRANS),可以更好地对项目之间的过渡模式进行建模。我们在推荐第一个,第二和第三个篮子时,将M2与不同的因素组合与5个公共基准数据集中的5个最先进的临时推荐方法进行了比较。我们的实验结果表明,M2在所有任务中所有数据集上的最先进方法显着优于提高22.1%的最新方法。此外,我们的消融研究表明,就建议性能而言,ED-Trans比复发性神经网络更有效。我们还对各种实验方案和评估指标进行了详尽的讨论,以进行次要建议评估。
Next-basket recommendation considers the problem of recommending a set of items into the next basket that users will purchase as a whole. In this paper, we develop a novel mixed model with preferences, popularities and transitions (M2) for the next-basket recommendation. This method models three important factors in next-basket generation process: 1) users' general preferences, 2) items' global popularities and 3) transition patterns among items. Unlike existing recurrent neural network-based approaches, M2 does not use the complicated networks to model the transitions among items, or generate embeddings for users. Instead, it has a simple encoder-decoder based approach (ed-Trans) to better model the transition patterns among items. We compared M2 with different combinations of the factors with 5 state-of-the-art next-basket recommendation methods on 4 public benchmark datasets in recommending the first, second and third next basket. Our experimental results demonstrate that M2 significantly outperforms the state-of-the-art methods on all the datasets in all the tasks, with an improvement of up to 22.1%. In addition, our ablation study demonstrates that the ed-Trans is more effective than recurrent neural networks in terms of the recommendation performance. We also have a thorough discussion on various experimental protocols and evaluation metrics for next-basket recommendation evaluation.