论文标题

英国COVID-19的通用概率建模和非均匀性问题

Generic probabilistic modelling and non-homogeneity issues for the UK epidemic of COVID-19

论文作者

Zhigljavsky, Anatoly, Whitaker, Roger, Fesenko, Ivan, Kremnizer, Kobi, Noonan, Jack, Harper, Paul, Gillard, Jonathan, Woolley, Thomas, Gartner, Daniel, Grimsley, Jasmine, de Arruda, Edilson, Fedorov, Val, MBE, Tom Crick

论文摘要

Coronavirus covid-19在主要基于社会接触的人口中传播。为了衡量广泛传染的潜力,应对相关的不确定性并告知其缓解措施,更准确,更健壮的建模对于政策制定非常重要。我们提供了一种灵活的建模方法,可提高洞察力的准确性。我们用它来分析与英国Covid-19相关的不同情况。我们提出了一个随机模型,该模型捕获了种群成员之间传染的固有概率性质。我们模型的计算性质意味着空间约束(例如社区和地区),不同年龄段的易感性以及其他因素(例如医疗前历史)可以轻松纳入。我们分析了英国Covid-19情况的不同可能情况。我们的模型对参数的小变化具有鲁棒性,并且能够应对不同的方案。 这种方法超出了代表流行病通过固定易感性,感染和恢复(SIR)的惯例的惯例。重要的是要强调,与我们的模型不同,标准的SIR型模型不够灵活,也不是随机的,因此应非常谨慎地使用。我们的模型允许合并异质性和固有的不确定性。由于经过验证的数据的稀缺性,我们通过使用来自其他相关来源的参数来校准我们的模型,包括平均协议(平均字段)与基于SIR模型中的参数的一致性。

Coronavirus COVID-19 spreads through the population mostly based on social contact. To gauge the potential for widespread contagion, to cope with associated uncertainty and to inform its mitigation, more accurate and robust modelling is centrally important for policy making. We provide a flexible modelling approach that increases the accuracy with which insights can be made. We use this to analyse different scenarios relevant to the COVID-19 situation in the UK. We present a stochastic model that captures the inherently probabilistic nature of contagion between population members. The computational nature of our model means that spatial constraints (e.g., communities and regions), the susceptibility of different age groups and other factors such as medical pre-histories can be incorporated with ease. We analyse different possible scenarios of the COVID-19 situation in the UK. Our model is robust to small changes in the parameters and is flexible in being able to deal with different scenarios. This approach goes beyond the convention of representing the spread of an epidemic through a fixed cycle of susceptibility, infection and recovery (SIR). It is important to emphasise that standard SIR-type models, unlike our model, are not flexible enough and are also not stochastic and hence should be used with extreme caution. Our model allows both heterogeneity and inherent uncertainty to be incorporated. Due to the scarcity of verified data, we draw insights by calibrating our model using parameters from other relevant sources, including agreement on average (mean field) with parameters in SIR-based models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源