论文标题

有界的射击算子和加博尔框架的轨道

Orbits of bounded bijective operators and Gabor frames

论文作者

Corso, Rosario

论文摘要

本文是对框架理论的贡献。希尔伯特空间中的框架是正统基础的概括。特别是,$ l^2(\ Mathbb {r})$的Gabor帧通常在应用程序中被一个或多个Windows的翻译和调制制成。更确切地说,该论文处理了克里斯滕森(Christensen)和哈纳萨布(Hasannasab)在过去几年中提出的一个问题,内容涉及过时的Gabor框架的存在,有些订购了超过$ \ Mathbb {Z} $,它们是$ l^2(\ Mathbb {r})$的界限轨道。给出了两类超过的Gabor框架,不能在$ \ mathbb {z} $上订购,并给出了$ gl(l^2(\ Mathbb {r})$的运算符轨道代表$。关于操作员表示的一些结果在任意框架的一般环境中说明,还涵盖了某些小波框架。

This paper is a contribution to frame theory. Frames in a Hilbert space are generalizations of orthonormal bases. In particular, Gabor frames of $L^2(\mathbb{R})$, which are made of translations and modulations of one or more windows, are often used in applications. More precisely, the paper deals with a question posed in the last years by Christensen and Hasannasab about the existence of overcomplete Gabor frames, with some ordering over $\mathbb{Z}$, which are orbits of bounded operators on $L^2(\mathbb{R})$. Two classes of overcomplete Gabor frames which cannot be ordered over $\mathbb{Z}$ and represented by orbits of operators in $GL(L^2(\mathbb{R}))$ are given. Some results about operator representation are stated in a general context for arbitrary frames, covering also certain wavelet frames.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源