论文标题
使用SINCNET和X-VECTOR FUSION的扬声器识别
Speaker Recognition using SincNet and X-Vector Fusion
论文作者
论文摘要
在本文中,我们提出了一种创新的方法,通过融合了两个最近引入的深神经网络(DNN),即SINCNET和X -VECTOR,以执行说话者的识别。在原始语音波形上使用SINCNET滤波器的思想是在CNN体系结构的初始卷积层中提取更明显的频率相关特征。 X向量用于利用以下事实:这种嵌入是一种有效的方法,可以从可变长度语音话语中征服固定尺寸特征,这在普通的CNN技术中具有挑战性,这在速度和准确性方面都具有有效的效率。我们的方法通过在后来的层中结合X-vector,同时在我们深层模型的初始层中使用Sincnet滤波器,从而利用两全其美的方法。这种方法使网络可以更快地学习更好的嵌入和收敛。以前的作品使用X-Vector或Sincnet过滤器或一些修改,但是我们介绍了一种新颖的融合体系结构,其中我们将这两种技术结合在一起,以收集有关语音信号的更多信息,从而为我们提供了更好的结果。我们的方法着重于用于扬声器识别的Voxceleb1数据集,我们将其用于培训和测试目的。
In this paper, we propose an innovative approach to perform speaker recognition by fusing two recently introduced deep neural networks (DNNs) namely - SincNet and X-Vector. The idea behind using SincNet filters on the raw speech waveform is to extract more distinguishing frequency-related features in the initial convolution layers of the CNN architecture. X-Vectors are used to take advantage of the fact that this embedding is an efficient method to churn out fixed dimension features from variable length speech utterances, something which is challenging in plain CNN techniques, making it efficient both in terms of speed and accuracy. Our approach uses the best of both worlds by combining X-vector in the later layers while using SincNet filters in the initial layers of our deep model. This approach allows the network to learn better embedding and converge quicker. Previous works use either X-Vector or SincNet Filters or some modifications, however we introduce a novel fusion architecture wherein we have combined both the techniques to gather more information about the speech signal hence, giving us better results. Our method focuses on the VoxCeleb1 dataset for speaker recognition, and we have used it for both training and testing purposes.