论文标题

学习形状手柄的生成模型

Learning Generative Models of Shape Handles

论文作者

Gadelha, Matheus, Gori, Giorgio, Ceylan, Duygu, Mech, Radomir, Carr, Nathan, Boubekeur, Tamy, Wang, Rui, Maji, Subhransu

论文摘要

我们提出了一个生成模型,以将3D形状合成为一组手柄(轻巧的代理,近似于原始的3D形状),以用于交互式编辑,形状解析和构建紧凑型3D表示中的应用。我们的模型可以生成具有不同基数和不同类型的手柄的手柄集(图1)。我们方法的关键是一个深层的体系结构,可以预测形状手柄的参数和存在,以及一种新颖的相似性度量,可以轻松容纳不同类型的手柄,例如长方体或球形网格。我们利用语义3D注释的最新进展以及自动形状总结技术来监督我们的方法。我们表明,所产生的形状表示是直观的,并且比以前的最先进的表现更高。最后,我们演示了如何在诸如交互式编辑,完成和插值等应用程序中使用我们的方法,以利用模型学到的潜在空间来指导这些任务。项目页面:http://mgadelha.me/shapehandles。

We present a generative model to synthesize 3D shapes as sets of handles -- lightweight proxies that approximate the original 3D shape -- for applications in interactive editing, shape parsing, and building compact 3D representations. Our model can generate handle sets with varying cardinality and different types of handles (Figure 1). Key to our approach is a deep architecture that predicts both the parameters and existence of shape handles, and a novel similarity measure that can easily accommodate different types of handles, such as cuboids or sphere-meshes. We leverage the recent advances in semantic 3D annotation as well as automatic shape summarizing techniques to supervise our approach. We show that the resulting shape representations are intuitive and achieve superior quality than previous state-of-the-art. Finally, we demonstrate how our method can be used in applications such as interactive shape editing, completion, and interpolation, leveraging the latent space learned by our model to guide these tasks. Project page: http://mgadelha.me/shapehandles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源