论文标题
使用Rényi信息测量的主动递归贝叶斯推断
Active recursive Bayesian inference using Rényi information measures
论文作者
论文摘要
递归贝叶斯推断(RBI)在带有流噪声观测值的实时设置中提供了最佳的贝叶斯潜在变量估计。活跃的RBI试图有效地选择导致更有益的观察结果的查询,以迅速减少不确定性,直到做出自信的决定为止。但是,通常不会共同选择推理和查询机制的最佳目标。此外,由于误导了先前的信息,传统的主动查询方法交错。在信息理论方法的激励下,我们提出了一个主动的RBI框架,并通过Renyi熵和$α$ divergence进行统一的推理和查询选择步骤。我们还提出了一个基于Renyi熵及其称为动量的变化的新目标,该目标鼓励探索以前的案例。所提出的活动RBI框架应用于概率单纯性后验变化的轨迹,该概率单纯性具有指定的置信度提供了协调的主动查询和决策。在某些假设下,我们在分析上证明,所提出的方法通过允许选择不太可能事件的选择来优于常规方法,例如相互信息。我们介绍了两种应用的经验和实验性能评估:餐厅推荐和脑部计算机界面(BCI)打字系统。
Recursive Bayesian inference (RBI) provides optimal Bayesian latent variable estimates in real-time settings with streaming noisy observations. Active RBI attempts to effectively select queries that lead to more informative observations to rapidly reduce uncertainty until a confident decision is made. However, typically the optimality objectives of inference and query mechanisms are not jointly selected. Furthermore, conventional active querying methods stagger due to misleading prior information. Motivated by information theoretic approaches, we propose an active RBI framework with unified inference and query selection steps through Renyi entropy and $α$-divergence. We also propose a new objective based on Renyi entropy and its changes called Momentum that encourages exploration for misleading prior cases. The proposed active RBI framework is applied to the trajectory of the posterior changes in the probability simplex that provides a coordinated active querying and decision making with specified confidence. Under certain assumptions, we analytically demonstrate that the proposed approach outperforms conventional methods such as mutual information by allowing the selections of unlikely events. We present empirical and experimental performance evaluations on two applications: restaurant recommendation and brain-computer interface (BCI) typing systems.