论文标题

刀和威胁探测器

Knife and Threat Detectors

论文作者

Noever, David A., Noever, Sam E. Miller

论文摘要

尽管基于图像的机器学习取得了迅速的进步,但挥舞攻击者的威胁识别并未引起很大的学术关注。鉴于高刀突击率(每年> 100,000)以及公共视频监视的可用性增加,以分析和法证文献记录,这种相对研究的差距似乎不太可理解。我们提出了三种互补的方法,用于使用多个刀具图像数据集对自动化威胁识别进行评分,每个方法的目标是缩小可能的突击意图,同时最大程度地识别错误识别误报和风险的假否定性。为了提醒观察者对挥舞刀具的威胁,我们在稀疏且修剪过的神经网络中测试和部署分类,其内存需求较小(<2.2兆字节)和95%的测试准确性。其次,我们训练检测算法(MaskRCNN),以单个图像从刀片中分割手,并将可能的确定性分配给其相对位置。这种细分可以用边界框来完成两个本地化,但同时也可以推断出对手威胁的相对位置。建立在Posenet体系结构上的最终模型分配了解剖路点或骨骼特征,以缩小威胁特征并减少误解的意图。我们进一步识别并补充现有的数据差距,这些数据差距可能蒙蔽了部署的刀具威胁探测器,例如收集无害的手和拳头图像是重要的负面训练集。当在商品硬件和软件解决方案上自动化时,一项原始研究贡献是对及时且易于获得的基于图像的警报的系统调查,以便在不幸的结果之前对犯罪预防对策进行优先级。

Despite rapid advances in image-based machine learning, the threat identification of a knife wielding attacker has not garnered substantial academic attention. This relative research gap appears less understandable given the high knife assault rate (>100,000 annually) and the increasing availability of public video surveillance to analyze and forensically document. We present three complementary methods for scoring automated threat identification using multiple knife image datasets, each with the goal of narrowing down possible assault intentions while minimizing misidentifying false positives and risky false negatives. To alert an observer to the knife-wielding threat, we test and deploy classification built around MobileNet in a sparse and pruned neural network with a small memory requirement (< 2.2 megabytes) and 95% test accuracy. We secondly train a detection algorithm (MaskRCNN) to segment the hand from the knife in a single image and assign probable certainty to their relative location. This segmentation accomplishes both localization with bounding boxes but also relative positions to infer overhand threats. A final model built on the PoseNet architecture assigns anatomical waypoints or skeletal features to narrow the threat characteristics and reduce misunderstood intentions. We further identify and supplement existing data gaps that might blind a deployed knife threat detector such as collecting innocuous hand and fist images as important negative training sets. When automated on commodity hardware and software solutions one original research contribution is this systematic survey of timely and readily available image-based alerts to task and prioritize crime prevention countermeasures prior to a tragic outcome.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源