论文标题
基于确定性SEIR模型的Covid-19流行的模拟
A simulation of a COVID-19 epidemic based on a deterministic SEIR model
论文作者
论文摘要
由新的冠状病毒引起的流行病在意大利北部传播,具有强烈的传染率。我们实施一个模型来计算这种流行病的感染人群和伤亡人数。理想情况下,该例子可以考虑到伦巴第(Lombardy)的意大利地区的情况,该案例始于2月25日。我们用迄今为止的死人数量(2020年5月5日)校准了模型,并根据文献中报告的值来限制参数。峰发生在第37天(3月31日)大约在迅速下降时发生的,最初的繁殖比R0 = 3,第22天和0.8天的第35天为1.36,表明锁定程度不同。预测的死亡人数约为15600人伤亡,在流行病结束时感染了270万人。提供更好的死人的孵化期为4.25天,感染期为4天,死亡率为0.00144/天[基于报告的(官方)伤亡人数]。如果假定报告的伤亡人数的两倍,感染率(IFR)为0.57%,2.36%。但是,这些速率取决于最初暴露的个体。如果暴露了大约九倍的人,则在流行病结束时感染的人数增加了三倍,而IFR = 0.47%。如果我们放松这些约束,并在孵育和感染期内使用更广泛的下层和上限范围,我们会观察到较高的孵育期(13 vess 4.25天)给出了相同的IFR(0.6 ves 0.57%),但在第一种情况下,裸露的个体持续了九倍。因此,对死亡率的精确确定受到流行特征的了解。
An epidemic disease caused by a new coronavirus has spread in Northern Italy with a strong contagion rate. We implement an SEIR model to compute the infected population and number of casualties of this epidemic. The example may ideally regard the situation in the Italian Region of Lombardy, where the epidemic started on February 25. We calibrate the model with the number of dead individuals to date (May 5, 2020) and constraint the parameters on the basis of values reported in the literature. The peak occurs at day 37 (March 31) approximately, when there is a rapid decrease, with a reproduction ratio R0 = 3 initially, 1.36 at day 22 and 0.8 after day 35, indicating different degrees of lockdown. The predicted death toll is approximately 15600 casualties, with 2.7 million infected individuals at the end of the epidemic. The incubation period providing a better fit of the dead individuals is 4.25 days and the infection period is 4 days, with a fatality rate of 0.00144/day [values based on the reported (official) number of casualties]. The infection fatality rate (IFR) is 0.57 %, and 2.36 % if twice the reported number of casualties is assumed. However, these rates depend on the initially exposed individuals. If approximately nine times more individuals are exposed, there are three times more infected people at the end of the epidemic and IFR = 0.47 %. If we relax these constraints and use a wider range of lower and upper bounds for the incubation and infection periods, we observe that a higher incubation period (13 versus 4.25 days) gives the same IFR (0.6 versus 0.57 %), but nine times more exposed individuals in the first case. Therefore, a precise determination of the fatality rate is subject to the knowledge of the characteristics of the epidemic.