论文标题
椭圆weyl群和Frobenius结构的良好基本不变性
Good Basic Invariants for Elliptic Weyl Groups and Frobenius Structures
论文作者
论文摘要
在本文中,我们为椭圆形根系的椭圆weyl群定义了一组良好的基本不变性。对于一个椭圆形的编纂$ 1 $,我们表明,一组良好的基本不变式提供了一组saito和Taylor系数获得的良好基本不变式的平面不变性,从而提供了作者获得的Frobenius结构的乘法的结构常数。
In this paper, we define a set of good basic invariants for the elliptic Weyl group for the elliptic root system. For an elliptic root system of codimension $1$, we show that a set of good basic invariants gives a set of flat invariants obtained by Saito and Taylor coefficients of the good basic invariants give the structure constants of the multiplication of the Frobenius structure obtained by the author.