论文标题
通过参数化方法对振荡动力学的全局相位振幅描述
Global phase-amplitude description of oscillatory dynamics via the parameterization method
论文作者
论文摘要
在本文中,我们使用参数化方法来完整描述$ n $维振荡器的动力学,而不是经典相减少。参数化方法允许通过有效的算法通过相位振幅变量来获得极限周期的吸引不变歧管的参数化。该方法具有几个优点。它在分析上提供了参数化的傅里叶泰勒扩展,并简化了允许歧管数值全球化的动力学。因此,人们可以获得局部和全局的等质素和等值材料,包括缓慢的吸引歧管,至高准确性,这提供了振荡动力学的几何肖像。此外,它可以直接提供无穷小相和振幅响应函数,即扩展的无穷小相和振幅响应曲线,这些响应曲线监测相位和振幅超出渐近状态。因此,提出的方法对不限于极限周期的扰动的相动态进行了准确的描述,而是吸引了它吸引不变的歧管。最后,我们探索了一些降低动力学维度的策略,包括将动力学减少到缓慢稳定的子手机上。我们通过将它们应用于神经科学中的不同三维单个神经元和神经种群模型来说明我们的方法。
In this paper we use the parameterization method to provide a complete description of the dynamics of an $n$-dimensional oscillator beyond the classical phase reduction. The parameterization method allows, via efficient algorithms, to obtain a parameterization of the attracting invariant manifold of the limit cycle in terms of the phase-amplitude variables. The method has several advantages. It provides analytically a Fourier-Taylor expansion of the parameterization up to any order, as well as a simplification of the dynamics that allows for a numerical globalization of the manifolds. Thus, one can obtain the local and global isochrons and isostables, including the slow attracting manifold, up to high accuracy, which offer a geometrical portrait of the oscillatory dynamics. Furthermore, it provides straightforwardly the infinitesimal Phase and Amplitude Response Functions, that is, the extended infinitesimal Phase and Amplitude Response Curves, which monitor the phase and amplitude shifts beyond the asymptotic state. Thus, the methodology presented yields an accurate description of the phase dynamics for perturbations not restricted to the limit cycle but to its attracting invariant manifold. Finally, we explore some strategies to reduce the dimension of the dynamics, including the reduction of the dynamics to the slow stable submanifold. We illustrate our methods by applying them to different three dimensional single neuron and neural population models in neuroscience.