论文标题
一维欧拉尔与对准系统的全球规律性
Global regularity for a 1D Euler-alignment system with misalignment
论文作者
论文摘要
我们研究了具有非本地比对相互作用的一维欧拉动力学,具有强烈的短程比对和远距离错位。与经过良好研究的Euler对准系统相比,未对准的存在带来了解决方案的不同行为,包括在无限时间可能会产生真空的可能性,从而破坏了解决方案的稳定。我们表明,尽管有未对准的效果,但通过强烈奇异的短距离对准相互作用,该解决方案在全球范围内是规律的。
We study one-dimensional Eulerian dynamics with nonlocal alignment interactions, featuring strong short-range alignment, and long-range misalignment. Compared with the well-studied Euler-alignment system, the presence of the misalignment brings different behaviors of the solutions, including the possible creation of vacuum at infinite time, which destabilizes the solutions. We show that with a strongly singular short-range alignment interaction, the solution is globally regular, despite the effect of misalignment.