论文标题
间隔观察者的同时状态和模型估计,部分已知的非线性系统
Interval Observers for Simultaneous State and Model Estimation of Partially Known Nonlinear Systems
论文作者
论文摘要
我们研究设计间隔值观察者的问题,这些观察者同时估计系统状态并学习一个未知的非线性系统,该模型具有动态未知输入和有界噪声信号的部分未知的非线性系统。利用仿射抽象方法和非线性分解函数的存在,并应用我们先前开发的数据驱动的功能过度评估/抽象方法过度估计未知的动态模型,我们提出的观察者会递归计算估计性间隔的最大和最小元素,这些估计元素的最大和最小元素可以传达真正的增值状态。然后,使用观察到的输出/测量信号,观察者迭代通过消除与测量不兼容的估计来缩小间隔。最后,考虑到新的间隔估计,观察者更新了未知模型动力学的过度评估。此外,我们为估计间隔宽度序列(即设计观察者的稳定性)提供了足够的条件,以可易于计数可行的集合的形式(混合)整数程序的形式。
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging affine abstraction methods and the existence of nonlinear decomposition functions, as well as applying our previously developed data-driven function over-approximation/abstraction approach to over-estimate the unknown dynamic model, our proposed observer recursively computes the maximal and minimal elements of the estimate intervals that are proven to contain the true augmented states. Then, using observed output/measurement signals, the observer iteratively shrinks the intervals by eliminating estimates that are not compatible with the measurements. Finally, given new interval estimates, the observer updates the over-approximation of the unknown model dynamics. Moreover, we provide sufficient conditions for uniform boundedness of the sequence of estimate interval widths, i.e., stability of the designed observer, in the form of tractable (mixed-)integer programs with finitely countable feasible sets.