论文标题

一种新型贪婪的高斯 - 赛德尔方法,用于解决大型线性最小二乘问题

A novel greedy Gauss-Seidel method for solving large linear least squares problem

论文作者

Zhang, Yanjun, Li, Hanyu

论文摘要

我们提出了一种新型的贪婪高斯 - 西德尔方法,用于解决大型线性最小二乘问题。此方法改善了Bai和Wu [Bai ZZ和Wu Wt最近提出的贪婪随机坐标下降(GRCD)方法。关于贪婪的随机坐标下降方法,用于解决大型线性最小二乘问题。数字线性代数应用。 2019; 26(4):1--15],进而改善了流行的随机高斯 - 塞德尔方法。提供了新方法的收敛分析。数值实验表明,以相同的精度,我们的方法在计算时间方面优于GRCD方法。

We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer Linear Algebra Appl. 2019;26(4):1--15], which in turn improves the popular randomized Gauss-Seidel method. Convergence analysis of the new method is provided. Numerical experiments show that, for the same accuracy, our method outperforms the GRCD method in term of the computing time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源