论文标题

基于显着的加权多标签线性判别分析

Saliency-based Weighted Multi-label Linear Discriminant Analysis

论文作者

Xu, Lei, Raitoharju, Jenni, Iosifidis, Alexandros, Gabbouj, Moncef

论文摘要

在本文中,我们提出了一种新的线性判别分析(LDA)来解决多标签分类任务。所提出的方法基于一个概率模型,用于在加权多标签LDA方法中定义单个样品的权重。线性判别分析是一种经典的统计机器学习方法,旨在找到线性数据转换,以增加最佳判别子空间中的类别歧视。传统LDA设置了与高斯类分布和单标签数据注释有关的假设。为了在多标签分类问题中采用LDA技术,我们利用对班级显着性的概率解释来利用直觉,以重新定义阶级间和阶级散点矩阵。基于各种亲和力编码的先验信息获得的基于显着的权重用于揭示每个实例在手头的多标签问题中对其每个类别都显着的概率。提出的基于显着性的加权多标签LDA方法已显示出各种多标签分类问题的性能改善。

In this paper, we propose a new variant of Linear Discriminant Analysis (LDA) to solve multi-label classification tasks. The proposed method is based on a probabilistic model for defining the weights of individual samples in a weighted multi-label LDA approach. Linear Discriminant Analysis is a classical statistical machine learning method, which aims to find a linear data transformation increasing class discrimination in an optimal discriminant subspace. Traditional LDA sets assumptions related to Gaussian class distributions and single-label data annotations. To employ the LDA technique in multi-label classification problems, we exploit intuitions coming from a probabilistic interpretation of class saliency to redefine the between-class and within-class scatter matrices. The saliency-based weights obtained based on various kinds of affinity encoding prior information are used to reveal the probability of each instance to be salient for each of its classes in the multi-label problem at hand. The proposed Saliency-based weighted Multi-label LDA approach is shown to lead to performance improvements in various multi-label classification problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源