论文标题
多解决卷积自动编码器
Multiresolution Convolutional Autoencoders
论文作者
论文摘要
我们提出了一个多分辨率卷积自动编码器(MRCAE)体系结构,该体系结构集成并利用了三个非常成功的数学体系结构:(i)Multigrid方法,(ii)卷积自动编码器和(iii)传输学习。该方法提供了一种自适应,层次结构,该体系结构利用了多尺度时空数据的渐进培训方法。该框架允许跨多个量表进行输入:从紧凑(少量的权重)网络体系结构和低分辨率数据开始,我们的网络逐渐以原则性的方式加深并扩大自身,以根据其当前重建的表现在更高分辨率数据中编码新信息。采用基本的转移学习技术来确保可以从先前的培训步骤中学习的信息迅速转移到较大的网络中。结果,网络可以在网络的不同深度上动态捕获不同的缩放特征。通过一系列关于合成示例和现实世界时空数据的数值实验来说明这种自适应多尺度体系结构的性能增长。
We propose a multi-resolution convolutional autoencoder (MrCAE) architecture that integrates and leverages three highly successful mathematical architectures: (i) multigrid methods, (ii) convolutional autoencoders and (iii) transfer learning. The method provides an adaptive, hierarchical architecture that capitalizes on a progressive training approach for multiscale spatio-temporal data. This framework allows for inputs across multiple scales: starting from a compact (small number of weights) network architecture and low-resolution data, our network progressively deepens and widens itself in a principled manner to encode new information in the higher resolution data based on its current performance of reconstruction. Basic transfer learning techniques are applied to ensure information learned from previous training steps can be rapidly transferred to the larger network. As a result, the network can dynamically capture different scaled features at different depths of the network. The performance gains of this adaptive multiscale architecture are illustrated through a sequence of numerical experiments on synthetic examples and real-world spatial-temporal data.