论文标题

Modulenet:知识传播的神经体系结构搜索

ModuleNet: Knowledge-inherited Neural Architecture Search

论文作者

Chen, Yaran, Gao, Ruiyuan, Liu, Fenggang, Zhao, Dongbin

论文摘要

尽管神经架构搜索(NAS)可以为深度模型带来改进,但它们总是忽略对现有模型的宝贵知识。 NAS中的计算和时间成本属性也意味着我们不应该从头开始搜索,而是要尝试重新使用现有知识。 在本文中,我们将讨论模型中的哪种知识可以并且应该用于新的体系结构设计。 然后,我们提出了一种新的NAS算法,即Modulenet,它可以完全从现有的卷积神经网络中完全继承知识。 为了充分利用现有模型,我们将现有模型分解为不同的\ textit {module} s,该模型也可以保持其权重,包括知识库。 然后,我们根据知识库采样并搜索新的体系结构。 与以前的搜索算法和从继承的知识中受益不同,我们的方法能够通过NSGA-II算法直接搜索宏空间中的体系结构,而无需在这些\ textit {module} s中调整参数。 实验表明,即使不在卷积层中调整权重的情况下,我们的策略也可以有效地评估新体系结构的性能。 在我们继承的知识的帮助下,我们的搜索结果始终可以在各种数据集(CIFAR10,CIFAR100)上获得更好的性能。

Although Neural Architecture Search (NAS) can bring improvement to deep models, they always neglect precious knowledge of existing models. The computation and time costing property in NAS also means that we should not start from scratch to search, but make every attempt to reuse the existing knowledge. In this paper, we discuss what kind of knowledge in a model can and should be used for new architecture design. Then, we propose a new NAS algorithm, namely ModuleNet, which can fully inherit knowledge from existing convolutional neural networks. To make full use of existing models, we decompose existing models into different \textit{module}s which also keep their weights, consisting of a knowledge base. Then we sample and search for new architecture according to the knowledge base. Unlike previous search algorithms, and benefiting from inherited knowledge, our method is able to directly search for architectures in the macro space by NSGA-II algorithm without tuning parameters in these \textit{module}s. Experiments show that our strategy can efficiently evaluate the performance of new architecture even without tuning weights in convolutional layers. With the help of knowledge we inherited, our search results can always achieve better performance on various datasets (CIFAR10, CIFAR100) over original architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源