论文标题
无限字母上有界自动机组的适当性
Amenability of Bounded Automata Groups on Infinite Alphabets
论文作者
论文摘要
我们研究了由有界活动自动机产生的组的作用,该组在其轨道schreier图上具有无限字母。 我们根据第一级动作的复发为此类群体介绍了一种舒适性标准。该标准是结果的自然扩展,即具有有限字母的有界活动自动机产生的所有组都是可正常的。 我们的动机来自对整个功能的迭代单肌群的研究。
We study the action of groups generated by bounded activity automata with infinite alphabets on their orbital Schreier graphs. We introduce an amenability criterion for such groups based on the recurrence of the first level action. This criterion is a natural extension of the result that all groups generated by bounded activity automata with finite alphabets are amenable. Our motivation comes from the investigation of iterated monodromy groups of entire functions.