论文标题

分散阶段对欧拉 - 拉格朗日浓度预测的体积位移效应

Volumetric Displacement Effects of Dispersed Phase on the Euler-Lagrange Prediction of a Dense Spray

论文作者

Pakseresht, Pedram, Apte, Sourabh V.

论文摘要

使用Euler-Lagrange方法对密集喷雾进行准确的预测非常具有挑战性,因为由于液滴的亚电网簇,分散相的大量分数。为了准确地模拟密集喷雾剂,需要考虑到由于分散相的运动和存在而考虑到载体相体积分数的时空变化来捕获这种效果。这会导致零速率的数字,可变密度方程在标准的双向耦合喷雾模拟中通常忽略了。使用基于压力的求解器,这引起了压力泊松方程和非差异速度场中的源项。为了验证这种方法的预测能力,首先使用大型涡流模拟与点粒子接近方法检查了雾化的非膨胀稀释型圆形射流,然后研究了高达38%的较高体积负载,并且不考虑体积位移效应。结果表明,对于高于5%的体积载荷,体积位移效应增强了流动的动力学,从而导致较高的流均值和R.M.S.与标准双向耦合的结果相比,速度。对于分散相的局部体积分数相对较高,这对于射流的近场更为明显。这种增强的猜想是由于修改后的连续性方程所引起的速度差异效应,其中载体相体积分数的时空变化增加了高空体馏分区域的速度。

Accurate prediction of a dense spray using an Euler-Lagrange approach is challenging because of high volume fraction of the dispersed phase due to subgrid cluster of droplets. To accurately model dense sprays, one needs to capture this effect by taking into account the spatio-temporal changes in the volume fraction of the carrier phase due to the motion and presence of the dispersed phase. This leads to zero-Mach number, variable density equations which are commonly neglected in the standard two-way coupling spray simulations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To validate the predictive capability of such approach, an atomized non-evaporating dilute particulate round jet is first examined using Large Eddy Simulation coupled with Point-Particle approach and then higher volume loadings up to 38% are investigated with and without taking into account the volumetric displacement effects. It is shown that for volume loadings above 5%, the volumetric displacement effects enhance dynamics of the flow resulting in a higher stream-wise mean and r.m.s. velocities compared to the results of standard two-way coupling. This is more pronounced for the near field of the jet where local volume fraction of the dispersed phase is relatively high. This enhancement is conjectured to be due to the velocity divergence effect due to the modified continuity equation where spatio-temporal variations in volume fraction of the carrier phase increases velocity in the regions of high void fraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源