论文标题

在单极Lefschetz上有限级差异的数量

On the monopole Lefschetz number of finite order diffeomorphisms

论文作者

Lin, Jianfeng, Ruberman, Daniel, Saveliev, Nikolai

论文摘要

让$ k $成为一个积分同源性3-Sphere $ y $的结,而$σ$相应的$ n $ fold循环分支盖。假设$σ$是一个合理的同源性领域(当$ n $是主要功率时,总是这种情况),我们为Lefschetz数量的动作提供了一个公式,覆盖翻译会导致$σ$的减少单极同源性。证明依靠对Seiberg的仔细分析 - 三孔和各种$η$ - invariants的方程式。我们提供了公式的几个应用:(1)我们计算了Seiberg(Witten and Furuta-furuta-ohta-ohta不变性),用于在整体同源物3 spheres上的所有半无半动作的映射Tori; (2)我们为$ s^3 $的结套盖(以琼斯多项式而言)给出了一种新颖的障碍物(就琼斯多项式而言)。 (3)我们提供了一组新的结一致一致性不变性,以支付盖上的单台覆盖层的翻译数量。

Let $K$ be a knot in an integral homology 3-sphere $Y$, and $Σ$ the corresponding $n$-fold cyclic branched cover. Assuming that $Σ$ is a rational homology sphere (which is always the case when $n$ is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of $Σ$. The proof relies on a careful analysis of the Seiberg--Witten equations on 3-orbifolds and of various $η$-invariants. We give several applications of our formula: (1) we calculate the Seiberg--Witten and Furuta--Ohta invariants for the mapping tori of all semi-free actions of $Z/n$ on integral homology 3-spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in $S^3$ being an $L$-space; (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源