论文标题

单眼深度估计和自我监督实例适应

Monocular Depth Estimation with Self-supervised Instance Adaptation

论文作者

McCraith, Robert, Neumann, Lukas, Zisserman, Andrew, Vedaldi, Andrea

论文摘要

自我监督学习的最新进展是,可以从原始视频数据中学习准确的单张彼得重建,而无需使用任何3dground Truth进行监督。但是,在机器人技术应用程序中,场景的多个视图可能会或可能不可用,取决于机器人的动作,在单眼和多视图重建之间切换。为了解决这种混合设置,我们提出了一种新方法,该方法将任何现成的自我监督的单眼深度重建系统扩展到Usemore,而不是在测试时图像。我们的方法基于Astandard Prior学会了进行单眼重建,但是在测试时间使用自学意义,以进一步提高可构造精度时,当可用多个图像可用时。用于更新模型的正确组件时,此应用程序非常有效。在标准的Kitti台式上,我们的自我监督方法始终优于先前的方法,对于三个共同的设置(单眼,立体和单眼+立体声)的平均降低了25%的不符合性误差,并且在完全融合的状态态度的方法中非常接近准确性。

Recent advances in self-supervised learning havedemonstrated that it is possible to learn accurate monoculardepth reconstruction from raw video data, without using any 3Dground truth for supervision. However, in robotics applications,multiple views of a scene may or may not be available, depend-ing on the actions of the robot, switching between monocularand multi-view reconstruction. To address this mixed setting,we proposed a new approach that extends any off-the-shelfself-supervised monocular depth reconstruction system to usemore than one image at test time. Our method builds on astandard prior learned to perform monocular reconstruction,but uses self-supervision at test time to further improve thereconstruction accuracy when multiple images are available.When used to update the correct components of the model, thisapproach is highly-effective. On the standard KITTI bench-mark, our self-supervised method consistently outperformsall the previous methods with an average 25% reduction inabsolute error for the three common setups (monocular, stereoand monocular+stereo), and comes very close in accuracy whencompared to the fully-supervised state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源