论文标题

共形转换的宇宙学常数:Möbius不变性和施瓦茨动作

The Cosmological Constant from Conformal Transformations: Möbius Invariance and Schwarzian Action

论文作者

Achour, Jibril Ben, Livine, Etera R.

论文摘要

The homogeneous Friedman-Lema\^ıtre-Robertson-Walker (FLRW) cosmology of a free scalar field with vanishing cosmological constant was recently shown to be invariant under the one-dimensional conformal group $\textrm{SL}(2,\mathbb{R})$ acting as M{ö}bius transformations on the proper time.在这里,我们将此分析概括为适当时间的任意转换,$τ\ mapsto \tildeτ= f(τ)$,这些$不应与时间坐标的重新分析相混淆。首先,我们表明,在$ \ textrm {sl}(2,\ mathbb {r})下,具有非变化宇宙常数$λ\ ne 0 $的FLRW宇宙学也是不变的。相关的共形Noether电荷形成了$ \ Mathfrak {Sl}(2,\ Mathbb {r})$ lie代数,该代数编码宇宙演化。其次,我们表明,可以通过特定的保形转换从$λ= 0 $ case产生宇宙常数,根据$λ$的符号,实现了适当时间的紧凑或去压缩。最后,我们在完整的组$ \ textrm {diff}({\ cal s}^1)下提出了一个扩展的FLRW宇宙动作不变,在适当的时间内,通过将宇宙学常数促进了对格仪的稳定场,以使整形阶段转换或将标量现场行动改写为Schwarzian行动,从而在适当的时间内提出了一个扩展的宇宙学动作。这种形式不变的宇宙学导致了一个新的时间问题,并且有必要以纯粹的时间占用术语重新考虑通货膨胀。

The homogeneous Friedman-Lema\^ıtre-Robertson-Walker (FLRW) cosmology of a free scalar field with vanishing cosmological constant was recently shown to be invariant under the one-dimensional conformal group $\textrm{SL}(2,\mathbb{R})$ acting as M{ö}bius transformations on the proper time. Here we generalize this analysis to arbitrary transformations of the proper time, $τ\mapsto \tildeτ=f(τ)$, which are not to be confused with reparametrizations of the time coordinate. First, we show that the FLRW cosmology with a non-vanishing cosmological constant $Λ\ne 0$ is also invariant under a $\textrm{SL}(2,\mathbb{R})$ group of conformal transformations. The associated conformal Noether charges form a $\mathfrak{sl}(2,\mathbb{R})$ Lie algebra which encodes the cosmic evolution. Second, we show that a cosmological constant can be generated from the $Λ=0$ case through particular conformal transformations, realizing a compactification or de-compactification of the proper time depending on the sign of $Λ$. Finally, we propose an extended FLRW cosmological action invariant under the full group $\textrm{Diff}({\cal S}^1)$ of conformal transformations on the proper time, by promoting the cosmological constant to a gauge field for conformal transformations or by modifying the scalar field action to a Schwarzian action. Such a conformally-invariant cosmology leads to a renewed problem of time and to the necessity to re-think inflation in purely time-deparameterized terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源