论文标题
关于分数Hankel变换的双重变换
On dual transform of fractional Hankel transform
论文作者
论文摘要
我们处理一类Bargmann类型的一类组成型家族,随着分数Hankel变换的双重变换而产生。它们的范围被确定为加权超晶体左Hilbert空间的特殊子空间,从而推广了第二类的伯格曼空间。它们的再现内核是通过涉及高斯超几何函数的$ \ star $ regularization的封闭表达来给出的。我们还讨论了它们的基本属性,例如它们的界限,并确定它们的奇异价值。此外,我们描述了他们在$ p $ -schatten课程中的紧凑性和会员资格。
We deal with a class of one-parameter family of integral transforms of Bargmann type arising as dual transforms of fractional Hankel transform. Their ranges are identified to be special subspaces of the weighted hyperholomorphic left Hilbert spaces, generalizing the slice Bergman space of the second kind. Their reproducing kernel is given by closed expression involving the $\star$-regularization of Gauss hypergeometric function. We also discuss their basic properties such as their boundedness and we determinate their singular values. Moreover, we describe their compactness and membership in $p$-Schatten classes.