论文标题
稀释介质上的反应扩散方程
Reaction-diffusion equation on thin porous media
论文作者
论文摘要
我们考虑在3D薄媒体上的反应扩散方程式$ \ varepsilon $,该介质由定期分布的尺寸$ \ varepsilon $的圆柱穿孔。在圆柱体的边界上,我们规定了纯反应类型的动态边界条件。由于$ \ varepsilon \ to 0 $,在2D限制中,结果反应扩散方程的源项来自于原始3D域的边界上施加的动态型边界条件。
We consider a reaction-diffusion equation on a 3D thin porous media of thickness $\varepsilon$ which is perforated by periodically distributed cylinders of size $\varepsilon$. On the boundary of the cylinders we prescribe a dynamical boundary condition of pure-reactive type. As $\varepsilon\to 0$, in the 2D limit the resulting reaction-diffusion equation has a source term coming from the dynamical-type boundary conditions imposed on boundaries of the original 3D domain.