论文标题

基于跨界的算法的快速突变

Fast Mutation in Crossover-based Algorithms

论文作者

Antipov, Denis, Buzdalov, Maxim, Doerr, Benjamin

论文摘要

在Doerr,Le,Makhmara和Nguyen(Gecco 2017)中提出的重尾突变算子,称为\ Emph {fast fast突变}同意以前使用的语言,到目前为止,仅在基于突变的算法中才有优势。在那里,它可以缓解算法设计人员找到最佳突变率,然后获得接近最佳突变率的性能。 在使用突变率的重尾选择基于交叉的算法的第一个运行时分析中,我们显示出更强的影响。对于$(1+(λ,λ))$遗传算法优化OneMAX基准功能,我们表明,使用重尾突变率可以实现线性运行时。这是比任何静态突变率可以获得的渐近速度,并且在渐近上等同于$(1+(1+(1+(λ,λ))$遗传算法的参数选择的自我调整版本)。这一结果是通过一项经验研究补充的,该研究表明了快速突变对随机令人满意的Max-3 Sat实例的有效性。

The heavy-tailed mutation operator proposed in Doerr, Le, Makhmara, and Nguyen (GECCO 2017), called \emph{fast mutation} to agree with the previously used language, so far was proven to be advantageous only in mutation-based algorithms. There, it can relieve the algorithm designer from finding the optimal mutation rate and nevertheless obtain a performance close to the one that the optimal mutation rate gives. In this first runtime analysis of a crossover-based algorithm using a heavy-tailed choice of the mutation rate, we show an even stronger impact. For the $(1+(λ,λ))$ genetic algorithm optimizing the OneMax benchmark function, we show that with a heavy-tailed mutation rate a linear runtime can be achieved. This is asymptotically faster than what can be obtained with any static mutation rate, and is asymptotically equivalent to the runtime of the self-adjusting version of the parameters choice of the $(1+(λ,λ))$ genetic algorithm. This result is complemented by an empirical study which shows the effectiveness of the fast mutation also on random satisfiable Max-3SAT instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源