论文标题
卵石驱动的行星形成非常低质量的星星和棕色矮人
Pebble-driven Planet Formation around Very Low-mass Stars and Brown Dwarfs
论文作者
论文摘要
我们进行了一项卵石驱动的行星种群综合研究,以调查(sub)恒星质量范围在$ 0.01 \ m _ {\ odot} $和$ 0.1 \ \ m _ {\ odot} $之间的(sub)Stellar质量范围内的行星形成。基于通过流的不稳定性来推断行星形成的数值模拟,我们获得了行星可能的特征质量和原始球星的初始质量(地球尺寸分布的最大物体),在早期的早期自我散热阶段或后来的非素材刺激性阶段的早期自我散发阶段或蛋白质相位的质量中。我们发现,最初的原始球星形成质量随宿主质量增加,轨道距离以及随着磁盘年龄而减小的质量。在$ 0.1 \ m _ {\ odot} $的后期m-warfs左右,这些原始球星可以通过卵石积聚到地球质量行星。但是,当棕色矮人的$ 0.01 \ m _ {\ odot} $中,当最初的原plan虫出生于自我磨损的磁盘早期出生时,行星的生长不超过火星质量,其增长失速在$ 0.01 $ $ 0.01 $左右,而当它们在非富裕的涂抹迪斯克郡时,它们是较晚的。在这些低质量恒星和棕色矮人周围,我们没有发现气体巨型行星形成的通道,因为实心芯仍然太小。当最初的原始球星仅在水冰线上形成时,最终的行星通常具有$ {\ gtrsim} 15 \%$ $水质量分数。另外,当初始原子星形形成对数均匀分布在整个原始磁盘上时,最终行星要么非常水(水质量分数$ {\ gtrsim} 15 \%$),要么完全是岩石(水质量分数$ {\ LISESIM} 5 \%$)。
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 \ M_{\odot}$ and $0.1 \ M_{\odot}$. Based on the extrapolation of numerical simulations of planetesimal formation by the streaming instability, we obtain the characteristic mass of the planetesimals and the initial masses of the protoplanets (largest bodies from the planetesimal size distributions), in either the early self-gravitating phase or the later non-self-gravitating phase of the protoplanetary disk evolution. We find that the initial protoplanets form with masses that increase with host mass, orbital distance and decrease with disk age. Around late M-dwarfs of $0.1 \ M_{\odot}$, these protoplanets can grow up to Earth-mass planets by pebble accretion. However, around brown dwarfs of $0.01 \ M_{\odot}$, planets do not grow larger than Mars mass when the initial protoplanets are born early in self-gravitating disks, and their growth stalls at around $0.01$ Earth-mass when they are born late in non-self-gravitating disks. Around these low mass stars and brown dwarfs, we find no channel for gas giant planet formation because the solid cores remain too small. When the initial protoplanets form only at the water-ice line, the final planets typically have ${\gtrsim} 15\%$ water mass fraction. Alternatively, when the initial protoplanets form log-uniformly distributed over the entire protoplanetary disk, the final planets are either very water-rich (water mass fraction ${\gtrsim}15\%$) or entirely rocky (water mass fraction ${\lesssim}5\%$).