论文标题
量子相和相关性驱动量子模拟器中宏观量子隧道逃逸的动力学
Quantum Phases and Correlations Drive the Dynamics of Macroscopic Quantum Tunneling Escape in Quantum Simulators
论文作者
论文摘要
量子隧道在多体量子物理学的许多方案中仍未探索,包括量子相变对隧穿动力学的影响。通常,量子相是关于基态的陈述,与远程平衡动力学无关。尽管隧道是一个涉及许多激发态的高度动态过程,但我们发现Bose-Hubbard模型的量子相确定了量子隧道逃逸或准结合问题的相位依赖性隧道结果。超流体和莫特绝缘子相关性导致新的量子隧道速率,即量子波动率。该速率显示出令人惊讶和高度动态的特征,例如被困和逃脱原子之间的振荡干扰以及用于超氟和莫特绝缘体相的完全不同的宏观量子隧穿行为。在超流体阶段,我们发现逃逸动力学是波浪状的,连贯的,从而导致密度的干扰模式,并具有非指数的快速衰减过程。当大约一半的原子逸出时,量子熵产生峰值。在莫特阶段,尽管有更强的排斥相互作用,但莫特缝隙的存在显着放缓了隧道,从而造成了有效的额外障碍。一次只能一次隧道,但是衰减过程几乎是线性的,完全违背了单粒子指数模型。此外,当仅大约四分之一的原子逃脱时,量子熵达到峰值。这些和许多其他这样的效应超出了单粒子量子隧道的常见概念,对隧道的量子统计效应以及从WKB到Instanton理论的众所周知的半古典方法。因此,这些结果为量子模拟器和量子动力学的远程平衡动力学探索开辟了新的探索方案。
Quantum tunneling remains unexplored in many regimes of many-body quantum physics, including the effect of quantum phase transitions on tunneling dynamics. In general, the quantum phase is a statement about the ground state and has no relation to far-from-equilibrium dynamics. Although tunneling is a highly dynamical process involving many excited states, we find that the quantum phase of the Bose-Hubbard model determines phase-dependent tunneling outcomes for the quantum tunneling escape, or quasi-bound problem. Superfluid and Mott insulator correlations lead to a new quantum tunneling rate, the quantum fluctuation rate. This rate shows surprising and highly dynamical features, such as oscillatory interference between trapped and escaped atoms and a completely different macroscopic quantum tunneling behavior for superfluid and Mott insulator phases. In the superfluid phase we find that escape dynamics are wave-like and coherent, leading to interference patterns in the density with a rapid decay process which is non-exponential. Quantum entropy production peaks when about half the atoms have escaped. In the Mott phase, despite stronger repulsive interactions, tunneling is significantly slowed by the presence of a Mott gap, creating an effective extra barrier to overcome. Only one atom can tunnel at a time, yet the decay process is nearly linear, completely defying the single-particle exponential model. Moreover, quantum entropy peaks when only about one quarter of the atoms have escaped. These and many other such effects go beyond the usual notions of single-particle quantum tunneling, quantum statistical effects on tunneling, and well-known semi-classical approaches from WKB to instanton theory. These results thus open up a new regime of exploration of far-from-equilibrium dynamics for quantum simulators and quantum dynamics.