论文标题
$ k $最丰富的同位素峰的快速精确计算带有层订购的堆
Fast exact computation of the $k$ most abundant isotope peaks with layer-ordered heaps
论文作者
论文摘要
化合物的同位素分布的理论计算在质谱的许多重要应用中至关重要,尤其是随着机器精度的增长。在过去的十年中,已经创建了大量的好工具。在本文中,我们提出了一种新颖的算法,用于计算给定化合物的顶部$ K $峰。该算法利用了在$ x+y $上选择的最佳选择方法中使用的图层订购的堆,并且能够有效地计算出非常大的分子的顶部$ k $峰。在其同龄人中,该算法显示出具有许多同位素的分子的显着加速。与$ \ textsc {isospec} $相比,该算法在\ ch {au2ca10ga10pd76}上获得了31倍以上的加速度,计算47409787峰值时,总丰度为0.999。
The theoretical computation of isotopic distribution of compounds is crucial in many important applications of mass spectrometry, especially as machine precision grows. A considerable amount of good tools have been created in the last decade for doing so. In this paper we present a novel algorithm for calculating the top $k$ peaks of a given compound. The algorithm takes advantage of layer-ordered heaps used in an optimal method of selection on $X+Y$ and is able to efficiently calculate the top $k$ peaks on very large molecules. Among its peers, this algorithm shows a significant speedup on molecules whose elements have many isotopes. The algorithm obtains a speedup of more than 31x when compared to $\textsc{IsoSpec}$ on \ch{Au2Ca10Ga10Pd76} when computing 47409787 peaks, which covers 0.999 of the total abundance.