论文标题

基于部分轨迹数据的目标预测

Destination Prediction Based on Partial Trajectory Data

论文作者

Ebel, Patrick, Göl, Ibrahim Emre, Lingenfelder, Christoph, Vogelsang, Andreas

论文摘要

购买新车的人中有三分之二喜欢使用替代品而不是内置导航系统。但是,对于许多应用程序,有关用户预期目的地和路线的知识至关重要。例如,可以为靠近目的地的可用停车位提供建议,或者沿路线沿线乘车机会分享机会。我们的方法基于最新的部分轨迹和其他上下文数据,可以预测车辆的可能目的地和途径。该方法遵循三步步骤:首先,执行了基于$ K $ -D的基于树的空间离散化,将GPS位置映射到离散区域。其次,对复发性神经网络进行了训练,可以根据轨迹的部分序列进行预测目的地。神经网络产生目的地得分,表示每个区域是目的地的概率。最后,计算到最可能的目的地的路线。为了评估该方法,我们比较了多个神经体系结构,并提出了目的地预测的实验结果。这些实验基于两个非个人化,时间戳的GPS出租车旅行地点的公共数据集。最佳性能模型能够预测平均误差1.3 km和1.43 km的车辆目的地。

Two-thirds of the people who buy a new car prefer to use a substitute instead of the built-in navigation system. However, for many applications, knowledge about a user's intended destination and route is crucial. For example, suggestions for available parking spots close to the destination can be made or ride-sharing opportunities along the route are facilitated. Our approach predicts probable destinations and routes of a vehicle, based on the most recent partial trajectory and additional contextual data. The approach follows a three-step procedure: First, a $k$-d tree-based space discretization is performed, mapping GPS locations to discrete regions. Secondly, a recurrent neural network is trained to predict the destination based on partial sequences of trajectories. The neural network produces destination scores, signifying the probability of each region being the destination. Finally, the routes to the most probable destinations are calculated. To evaluate the method, we compare multiple neural architectures and present the experimental results of the destination prediction. The experiments are based on two public datasets of non-personalized, timestamped GPS locations of taxi trips. The best performing models were able to predict the destination of a vehicle with a mean error of 1.3 km and 1.43 km respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源